La machine d'Anticythère, appelée également mécanisme d'Anticythère, est considérée comme le premier calculateur analogique antique permettant de calculer des positions astronomiques. Elle a été découverte en 1900 dans une épave près des côtes de l'île grecque d'Anticythère, entre Cythère et la Crète.
Elle est datée d'avant 87 av. J.-C. et c'est le plus vieux mécanisme à engrenages connu. Les fragments retrouvés sont conservés au Musée national archéologique d'Athènes.
Le fragment principal de la machine : 20 x 20 cm environ
L'identité du concepteur est débattue. Il pourrait s'agir de l'un des suivants :
Archimède de Syracuse (-287 à -212), père de la mécanique statique. Cette hypothèse est aujourd'hui débattue par les archéologues ayant étudié le mécanisme,
Un disciple d'Archimède, évoqué par Cicéron,
Hipparque de Nicée (-190 à -120), car fondateur de la trigonométrie,
Posidonios de Rhodes (-135 à -51), selon les indications de son ami Cicéron.
Des indices font de Rhodes le lieu possible de conception et de fabrication : Hipparque et Posidonios vivaient à Rhodes, cette île était un centre intellectuel très important à l'époque.
Peu avant Pâques 1900, deux caïques de pêcheurs d'éponge grecs (au scaphandre) de Symi, l'Euterpe et la Calliope, en route vers l'Afrique du Nord, font escale sur la côte nord-est d'Anticythère, devant s'y abriter à cause d'une tempête au large. Le 4 avril 1900, profitant d'une accalmie, l'un des plongeurs, Elias Lykopantis (ou Stadiatis) remonte et raconte qu'il a vu des hommes nus et des chevaux : il vient de découvrir par hasard l'épave antique gisant par 62 mètres de fond environ. Il en remonte un objet de la cargaison, la main d'une statue en bronze elle appartient à la statue dite du Philosophe. Les pêcheurs ne modifient pas leurs plans pour autant, et ce n'est qu'au retour, à l'automne, qu'ils avertissent les autorités grecques plutôt que le gouvernement ottoman dont Symi dépend à l'époque par patriotisme hellénique. Le gouvernement grec dépêche aussitôt sur place des navires de sa marine de guerre, le 24 novembre 1900. Les opérations de renflouement de l'épave durent jusqu'en septembre 1901, et se soldent par la mort accidentelle d'un pêcheur et la paralysie de deux autres, frappés par le mal des profondeurs. De nombreuses statues et statuettes en bronze et en marbre en sont retirées, dont la plus célèbre est un éphèbe, dit éphèbe d'Anticythère, souvent attribué à Euphranor ou à Lysippe (ces découvertes remplissent actuellement trois salles du Musée national archéologique d'Athènes), ainsi que des objets divers (instruments chirurgicaux, lyre en bronze, etc.).
On considère que la découverte de la machine à proprement parler date du 17 mai 1902 quand l'archéologue Valerios Stais s'aperçoit qu'un morceau de pierre rapporté du site recelle des inscriptions et des engrenages incrustés. Un examen révèle qu'en fait de pierre, il s'agit d'un mécanisme oxydé, dont il reste trois morceaux importants et 82 fragments plus petits.
En 1976, la Calypso est sur place et l'équipe du commandant Cousteau explore l'épave. Elle y découvre des pièces de monnaie et ceci permet de préciser la date du naufrage et la provenance du navire : en -86, l'armée romaine reconquiert la Grèce et met la ville de Pergame à sac. Le navire, à destination de Rome, aurait sombré lors d'une tempête.
Le soin et l'adresse avec lesquels cette machine fut réalisée, ainsi que les capacités nécessaires en mécanique et en astronomie remettent en question les connaissances historiques sur les sciences grecques. En effet, aucun objet de même âge et de même complexité n'était connu dans le monde et il faut attendre près d'un millénaire pour voir apparaître des mécanismes comparables. Vers 1905, le philologue Albert Rehm (de) est le premier à comprendre qu'il s'agit d'un calculateur astronomique.
Schéma du mécanisme
Comme il est impossible de démonter le mécanisme fortement corrodé sans l’endommager gravement et que les moyens d'étude classiques, tel que la radiographie, s’avéraient inadaptés, toute nouvelle étude du disque fut bloquée ; en 2000, l’astronome Mike Edmunds de l’université de Cardiff et le mathématicien Tony Freeth eurent l’idée d’utiliser un scanner à rayons X.
Pour étudier un si petit objet (de quelques centaines de grammes), il faut construire un scanner à rayons X (en fait, un tomographe à la fois de très haute résolution et de 450 kilovolts pour que le faisceau puisse traverser l'objet dans le sens de la longueur), pesant, avec sa console, plus de huit tonnes. L'appareil, construit par X-Tek Systems, s’avère capable de reconstituer et produire des images tridimensionnelles avec une précision de 50 microns.
Pour parachever cette nouvelle expertise scientifique, Edmunds rassembla, à l'automne 2005, une équipe pluri-disciplinaire associant des astronomes, des physiciens, des mathématiciens et des paléographes des trois universités les plus concernées, en impliquant les départements suivants :
Université de Cardiff, école de physique et d’astronomie (82 personnes) ;
Université d’Athènes : section d’astronomie, astrophysique et mécanique, dirigée par le professeur Triberis Georges (responsable : Pr Xénophon Moussas) (71 personnes);
Université Aristote de Thessalonique : section d’astrophysique, astronomie et mécanique du département de physique (72 personnes). (responsable : Pr John Seiradakis).
Pour Xénophon Moussas, directeur du laboratoire d'astrophysique de l'université d'Athènes, qui participe aux investigations en cours sur le disque, la machine est plus complexe que les astrolabes connus jusqu'alors qui ne comportent que quelques engrenages et roues à dents. Avec son équipe, Xénophon Moussas a réussi à déchiffrer 2 000 nouveaux caractères Price n'en avait déchiffré « que » 900, y compris sur les disques à l'intérieur de la machine. Ces textes sont à la fois un mode d'emploi de l'appareil et un traité d'astronomie. Quatre cadrans « au moins » et non pas trois indiquent les positions du Soleil et de la Lune, et un plus petit cadran décrit les phases de la lune.
Il est désormais certain qu'il s'agissait d'un calculateur analogique qui décrivait les mouvements solaire et lunaire, sans que l'on puisse à proprement parler d'horloge astronomique car le mécanisme était actionné par une manivelle. Elle servait également à prévoir les éclipses et aurait pu aussi servir à prédire les mouvements de certaines planètes.
D’autre part, la forme des caractères, comparée à celles d'autres inscriptions de la même époque, conduit les experts à dater la pièce de la fin du IIe siècle avant notre ère.
L'équipe du Projet de recherche a communiqué les résultats des analyses en cours lors d'une conférence internationale à Athènes, le 30 novembre et le 1er décembre 2006. La première publication a été faite par le journal scientifique Nature.
En 2011, l'entreprise Hublot reproduit la Machine d'Anticythère en la miniaturisant à l'échelle d'une montre bracelet.
Modèle reconstruit de la machine par Mogi Vicentini
Si, grâce aux données accumulées sur la structure interne de la machine, le mécanisme est connu en détail, son fonctionnement est lui moins certain.
Ce calculateur analogique, fabriqué en bronze, est actuellement fragmenté en trois parties principales. Il occupe le volume d'un boîtier haut de 21 cm, large de 16 cm et épais de 5 cm (dimensions d’un livre de taille moyenne).
Il est composé de plus de 82 éléments dont une trentaine de roues dentées. Il était probablement actionné au moyen d'une manivelle. Son fonctionnement, basé sur une modélisation mathématique de la course des astres, repose sur la rotation d'engrenages de tailles différentes entraînant des aiguilles indiquant la position des astres à un moment donné. Selon Freeth, une manivelle (manquante) actionnait la roue principale qui entraîne l'ensemble des engrenages. La face avant possède des aiguilles indiquant les positions de la Lune et du Soleil par rapport au Zodiaque, ainsi qu'un cadran correspondant au calendrier égyptien de 365 jours. La face arrière comporte deux cadrans, l'un correspondant à un calendrier astronomique, le Cycle de Méton, l'autre correspondant au Saros, cycle de lunaisons permettant de prédire des éclipses.
On tournait la manivelle pour régler le mois et l'année sur le calendrier métonique, le calendrier égyptien placé sur l'autre face permettant de régler le jour.
Pour prédire une éclipse, on faisait tourner la manivelle jusqu'à ce que l'aiguille du cadran du Saros tombe sur une inscription correspondant à une éclipse. Le cadran métonique indiquait alors le mois et l'année de cette éclipse. Pour calculer le jour précis de l'éclipse, on se reportait sur la face avant et on tournait la manivelle pour mettre les aiguilles indiquant les positions de la Lune et du Soleil en phase (position de la nouvelle lune pour une éclipse solaire) ou en opposition de phase (position de la pleine lune pour une éclipse lunaire), l'aiguille du calendrier égyptien indiquant le jour précis de l'éclipse. Cette méthode est relativement fiable pour les éclipses lunaires, visibles de toute la Terre, mais seulement probable pour les éclipses solaires, celles-ci n'étant visibles que sur une étroite bande de la Terre. D'autres cadrans donnaient des informations complémentaires, telles que la date des divers jeux antiques.
Le mécanisme
Elles sont composées de plus de 2 200 lettres grecques. Ces lettres gravées sur le bronze sont petites (1,5 à 2,5 mm de hauteur) et plus ou moins érodées. Leur graphisme indique leur datation aux alentours de 100 avant J.-C.
Les inscriptions, déchiffrées à 95 %13, se divisent en deux types :
un texte astronomique « étrange » à l'avant du mécanisme (les mots Vénus, Hermès/Mercure, le zodiaque y apparaissent).
un « mode d'emploi » à l'arrière, combinant des indications sur les roues dentées, les périodes de ces roues et les phénomènes astronomiques.
La nature des inscriptions suggère une origine sicilienne (Syracuse), où vivaient les héritiers d'Archimède. Il apparait sur le cadran supérieur les noms de six villes accueillant des jeux panhelléniques, dont cinq noms ont pu être déchiffrés, dont celui d'Olympie. Ce cercle divisé en quatre secteurs tournait d'un quart de tour pour une année, décrivant ainsi le cycle d'une olympiade.
La première, sûrement construite par Archimède, se retrouva à Rome grâce au général Marcus Claudius Marcellus. Le militaire romain la ramena après le siège de Syracuse en 212 avant J.-C., où le savant grec trouva la mort. Marcellus éprouvait un grand respect pour Archimède (peut-être dû aux machines défensives utilisées pour la défense de Syracuse) et ne ramena que cet objet du siège. Sa famille conserva le mécanisme après sa mort et Cicéron l'examina 150 ans plus tard. Il le décrit comme capable de reproduire les mouvements du Soleil, de la Lune et de cinq planètes :
« Hanc sphaeram Gallus cum moveret, fiebat ut soli luna totidem conversionibus in aere illo quot diebus in ipso caelo succederet, ex quo et in [caelo] sphaera solis fieret eadem illa defectio, et incideret luna tum in eam metam quae esset umbra terrae, cum sol e regione… ». Traduction : « Lorsque Gallus actionnait cette sphère, il se produisait que la lune succédait au soleil en autant de tours dans le cuivre que de jours dans le ciel même, par quoi il se produisait aussi dans le cadran du soleil le même retard, et la lune tombait dans le cône constitué de l’ombre de la terre au moment même où le soleil, dans la direction…(lacune) » Cicéron mentionne un objet analogue construit par son ami Posidonios.
Les deux mécanismes évoqués se trouvaient à Rome, cinquante ans après la date du naufrage d'Anticythère. On sait donc qu'il existait au moins trois engins de ce type. Par ailleurs, il semble que la machine d'Anticythère s'avère trop sophistiquée pour ne constituer qu'une œuvre unique.
Egger Ph.